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Abstract— Thermal convection in a two-dimensional square enclosure induced simultaneously by gravity
and vertical vibration is investigated numerically. A penalty finite element method with a Newton—-Raphson
iteration algorithm and a backward difference scheme dealing with the time term are adopted to solve the
governing equations. In order to investigate the effects of the vibration frequency and Rayleigh number
on the thermal convection in the enclosure, the vibration frequency is varied from 1 to 10* and three
different values of the Rayleigh number of 0, 10* and 10° are considered. According to the results, the
thermal convection can be divided into five regions: (i) guasi-static convection ; (ii) vibration convection;
(iii) resonant vibration convection; (iv) intermediate convection; and (v) high frequency vibration convec-
tion. In the high Rayleigh number (= 10% case, the gravitational thermal convection dominates, and the
vibration motion does not enhance the heat transfer rate remarkably. In contrast, in the low Rayleigh
number (=10% case, except in the quasi-static convection region, the vibration thermal convection
is dominant, and the vibration enhances the heat transfer rate significantly. In addition, two analytic
methods are proposed to predict the frequencies of the quasi-static convection and resonant vibration
convection regions, respectively. The values predicted by the two methods are in agreement with that
obtained from the numerical method.

INTRODUCTION

THE sTUDY of natural convection in an enclosure has
been investigated for decades due to its extensive
applications in engineering, like solar energy systems,
electronic cooling equipment, crystal growth pro-
cesses, etc. However, most of the studies have con-
centrated on the static case, in which the enclosure is
fixed on an inertial frame and subjected to a constant
gravity only. These kinds of problems have been
reviewed extensively by Ostrach [1-3], Catton [4] and
Yang [5]. However, there are many practical problems
of natural convection in an enclosure occurring in the
non-inertial frame which are caused by non-periodic
(accelerating—decelerating) or periodic (harmonic
vibration) motion. These kinds of problems are rather
complicated and difficult ; besides, theoretical, numeri-
cal or experimental investigations on such problems
are comparatively few,

In the past, Richardson [6] reviewed the effects of
sound and wall vibration on heat transfer. Gershuni
and Zhukhovitsky [7] surveyed the studies of
vibrational convection under a zero gravity condition.
Forbes et al. [8] conducted experiments to investigate
the enhancement of thermal convection heat transfer
in a liquid-filled rectangular enclosure by vibration ;
the results showed that the vibration frequency and
acceleration were the dominant factors which affected
heat transfer, and the effects of vibration amplitude
and average velocity were minor. When the vibration
frequency was close to the resonant frequency of the
liquid column in the enclosure, the heat transfer rate

increased very markedly and the value of enhance-
ment was raised by almost 50% compared to the
condition under no vibration. In the experimental
study, Ivanova and Kozlov [9] considered vibration
effects on the natural convection in a horizontal cyl-
inder layer. According to the vibration intensity and
the flow type, the flow field was divided into three
regimes. In the first regime, laminar motion existed
and the enhancement of heat transfer rate was minor,
and in the second regime the development of a wave
instability in the ascending flow near the heated cyl-
inder was observed and the heat transfer character
was similar to the first regime. In the third regime,
the threshold development of the vibrational vortices
occurred and the increase of heat transfer rate was
remarkable. Ivanova [10] studied the vibration effect
on the cooling process of the fluid layer between the
concentric cylinders. When the wall temperature
decreased abruptly, the results showed that increas-
ing the vibration frequency decreased the cooling time
of the floid. Zavarykin er al. {11, 12] vibrated the
fluid layer vertically or in parallel to its temperature
gradient to investigate the effects of vibration on the
stability of a hydrodynamic system. The results were
in good agreement with the theory, As for the theor-
etical studies of the related subject, Gershuni and Zhu-
khovitskii [13] studied the stability of a horizontal
layer of fluid on a plane with a periodically varying
temperature gradient. They showed that the system
could be described by the Hill equation with damping.
Subsequently, the study was extended to the modu-
lation of the vertical temperature gradient and the
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b vibration amplitude [m]

C,  specific heat [Jkg 'K ']

g broadest definition of the gravity,
go+bQ%sin Qf [ms™ 7

Jo standard gravitational acceleration,
98 ms™?
G vibration Grashof number,

(BT, —THL)*[2v*
k thermal conductivity [Wm 'K~
L length of the enclosure [m]

Nu Nusselt number

Nu  average Nusselt number
Nu, total Nusselt number
Nu,, local Nusselt number

p pressure |Pa]

p* motion pressure [Pa]

P dimensionless pressure

Pr Prandtl number, v/a

Ra  Rayleigh number, gof(T,,— T.)L*/(av)
time-dependent Rayleigh number,
g(B(T,—TIL’/(av)

! time [s}

T temperature [K]

u,v  velocities of x and y directions [ms™']

U,V dimensionless velocities of x and »
directions

V*  velocity scale of the resonant flow

x,y coordinates

X, Y dimensionless coordinates.

NOMENCLATURE

Greek symbols i
a thermal diffusivity [m®s " !|
B thermal expansion coeflicient [K ']
I’ period of vibration, 27/Q {s]
5, thickness of Stokes layer, 4.5,/(2v/Q) [m]
0 dimensionless temperature
i viscosity [kgm 's "}
v kinematic viscosity [m?s " '}
) density [kgm 7]
T dimensionless time
b g dimensionless stream function ]
Wonax ormiy  Maximum (or minimum) value
of ¥ at a given instant state
W ax (or miny. max orminy  MAXimum {or
minimum) value of the time history of
W vax for miny 111 @ flow period |
© dimensionless {requency of vibration, %
QLx '
Q angular frequency of vibration {rads '].
Subscripts ‘
C cold wall
h hot wall
r resonant flow state.
Superscript
m iteration number.

gravity, and they examined the destabilizing and sta-
bilizing effect of parameter modulation on the con-
vection [14]. Zenkovskaya and Simonenko [15] used
the time-averaged method to investigate the stability
of fluid flow for high frequency vibration. Later, Ger-
shuni et al. [16], Sharifulin [17] and Siraev [18] used
the above-mentioned method to study the vibrational
thermal convection under the weightlessness con-
dition in a rectangular, cylindrical enclosure and a
heated cylinder in an unconfined fluid, respectively.
Due to the high frequency assumption, many impor-
tant phenomena, like the resonant state and the
detailed variation of the heat transfer rate, cannot
be investigated by solving time-averaged governing
equations. However, Yurkov [19, 20] directly solved
the Boussinesq-approximated governing equations to
investigate the thermal convection in a square enclos-
ure induced by finite-frequency vibration under the
weightlessness condition. From the results of the aver-
age Nusselt number, the parametric resonant
phenomenon was found. Biringen and Danabasoglu
[21] studied the effects of gravity modulation in a
thermally driven rectangular enclosure for terrestrial
and microgravity environments; the results showed
that the destabilizing and stabilizing effects of gravity

modulation agreed with the theories of Gresho and
Sani [22]. Biringen and Peltier [23] studied the three-
dimensional Bernard convection with gravitational
modulation and confirmed the synchronous, subhar-
monic and relaxation oscillation response regimes
described by the linear analysis of Gresho and Sani
[22]. Also, Fu and Shieh [24] studied a square enclos-
ure subjected to an accelerating and decelerating pro-
cess. From the scale and mathematical analyses, the
results showed that the heat transfer rate of the
vertical wall could be delineated by the quasi-steady
state when the Rayleigh number rate of variation
{dRa(r)/dz| was less than the boundary response rate
Pr'*|Ra(7)|*2. As for the theoretical study of thermal
convection induced by vibration and gravity in an
enclosure, few such investigations have been con-
ducted. Thus, knowledge of behavior in this field is
important in many practical engineering problems.
Hence, the aim of the study is to investigate numeri-
cally the detailed heat transfer mechanism of thermal
convection which is induced by gravity and vibration
simultaneously in a square enclosure at steady state. A
finite element method is used to solve the Boussinesg-
approximated governing equations. Since in this case
there are many factors that affect the heat transfer
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mechanism and the vibration perpendicular to the
temperature gradient is the most critical [21], we
mainly consider the effects of the vertical vibration
frequency on heat transfer mechanism. The range of
vibration frequency w varies from 1 to 10%, in which
the resonant frequency is included. The accompanying
factors of Rayleigh number are 0, 10* and 10°, respec-
tively, the vibration Grashof number is fixed at 10°
and the Prandtl number is 0.71. Corresponding to the
variations of vibration frequency from low to high,
the flow field and heat transfer rate change from the
quasi-static state region via a resonant region to a
high frequency region, and in the resonant region the
heat transfer rate varies drastically. The streamlines,
isothermal lines and the variations of Nusselt number
and stream function are also examined in detail.

PHYSICAL MODEL

An air-filled (Pr = 0.71) square enclosure with two
horizontal adiabatic walls and two vertical constant
temperature walls at which the temperature of the left
wall is higher than that of the right wall is proposed
in this study and a sketched model is shown in Fig.
1. Initially (¢ = 0), the flow in the enclosure is at steady
flow state with the corresponding Rayleigh number
under the no vibration condition. Later (¢ > 0), the
enclosure is subjected to a vertical vibration with the
displacement — b sin (Q¢) parallel to the direction of
gravity. Then a non-inertial frame of reference trav-
eling with the enclosure is used and the parameters
b, Qand ¢ are respectively the displacement amplitude,
angular frequency and time.

In order to facilitate the analysis, the following
assumptions and dimensionless variables are con-
sidered.

1. The fluid is Newtonian and the flow is two-dimen-
sional laminar.

2. The vibration velocity amplitude bQ is not large
and the flow is assumed to be incompressible [25].

3. The Boussinesq approximation is valid.

g bSIN(wt)

[ > X
o

F1G. 1. Physical model.
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‘[=t/(L2/(X), X=x/L$ Y=J’/L,
U =uf(a/L),
P = p*/(p.a’/L?),

Ra = go (T — THL*/(av),

V=u(@/L), 8=(T-T)(T,~To),

o =QLa, Pr=v/a,
G = (BbQT, —T)L)*/2v?, 0y

i which G is called the vibration Grashof number {7].
Consequently, the dimensionless governing equa-
tions can be expressed as follows:

U oV
S+ 5y=0 (2a)
v, U, ,oU_ _op R RY
atVaxt ayT Tax T \ax? T o
(2b)
v, . v o oV . ey
TVt ey Tar T \axr T oy

+ Pr(Ra+w\/(2G) sin wr) (2c)

3 00 00 0%
VTt

20 @0
ot ox

The boundary conditions are as follows :

X=0, U=V=0, 0=1
X=1, U=V=0=0
Y=0 and Y=1, U=V=200/0Y=0. (3

SOLUTION METHOD

The penalty Galerkin finite element method with a
Newton—-Raphson algorithm and a backward differ-
ence scheme dealing with the time term which is simi-
lar to the one used in Fu et al. [26] are emploved to
solve the governing equations (2a)—(2d). A nine-node
quadratic isoparametric element is used to express the
velocities and temperature terms which are integrated
by 3 x 3 Gaussian quadrature, while the pressure term
is expressed by the penalty function and integrated
by 2 x 2 Gaussian quadrature. During the computing
process, the convergent values of velocities and tem-
perature of the lower frequency vibration situation
are used as the initial values for the neighboring high
frequency vibration cases. The velocities and tem-
perature at steady flow state with the corresponding
Rayleigh number under no vibration are regarded as
the initial values of the lowest frequency vibration
situation. As for the criteria for steady flow state under
periodic motion, it is difficult to define them definitely.
Then, except in the resonant region, while the fol-
lowing criteria are satisfied the flow is regarded as
reaching the steady flow state:
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m+l_ g
‘P,er,‘?, <10, ¢=UVandd (4a)
and
N N
LNi'ﬁ“k <10 * n=k-3,... .k (4b)
La+1

Nu, , represents the nth extremum (maximum and
minimum) of the left wall Nusselt number in the time
history. Equation (4b) indicates that the relative
variations of four successive extrema of the left wall
Nusselt number are less than 10 *. When the above
criteria hold, the difference of energy balance of
the enclosure is always less than 10~ * and the error of
mass conservation is always less than 10 7.

The local Nusselt number Nu,, on any vertical
plane is defined as
N [ Cu(T—T,) kaT]/[k(T T.)/L)
Uey = Ul — 1) =K = — L .
. p r ox / h / (5)
The total Nusselt number Nu, on any vertical plane
is defined as

1
Nu, = J Nu,,.dY. (6)
0

The dimensionless stream function ¥ is obtained by
integrating U = 0W/0Y with W = 0 along the walls.

For choosing the proper mesh and time step during
the computation process, a series of numerical tests
is carried out. The results for Ra = 10%, G = 10°,
® =810 (case I) and Ra = 10° G =10° w = 800

Ra = 10"

De Vahl

Bench- Davis Authors  Authors

mark 41 x 41 13x13 10x 10

solution uniform elements elements

¥ ol 5.071 5.098 5.075 5.074
(0.53%) (0.079%) (0.059%)

Unincz s 16.178 16182 16.106  16.095
(0.025%) (0.44%) (0.51%)

Y 0.823 0.823 0.8338 0.839
Vinaxw= 0.5 19.617 19.509 19.526 19.621
(0.55%) (0.46%) (0.02%)

X 0.119 0.120 0.108 0.125
Nu 2.243 2.234 2.254 2.259
(0.40%) (0.49%) (0.71%)

Nu,_s 2.243 2.235 2.266 2.274
(0.36%) (1.02%) (1.38%)

Nu,_y 2.238 2.242 2.246 2.248
(0.18%) (0.36%) (0.45%)

Nt e 3.528 3.545 3.529 3.531
(0.48%) (0.028%) (0.085%)

Y 0.143 0.149 0.162 0.161
Nttpin o 0.586 0.592 0.586 0.587
(1.02%)  (0.0%) (0.17%)
1.0 1.0

Y 1.0

W. S. Fu and W. J. SHiEH

(case II) are presented. First, the meshes are tested
with the static case (without vibration) and the results
arc compared with those of De Vahl Davis [27] in
Table 1. This shows that the accuracy of the mesh
10 x 10 elements and 13 x 13 elements are valid for the
Ra = 10* and Ra = 10° cases, respectively. Next, the
cases with vibration are considered and the results arc
shown in Fig. 2. In the figure, the characters Max,
Avg and Min represent, respectively, the maximum,
time-averaged and minimum values of the different
variables. The time-averaged value is calculated by

G
[;f_[‘] J{: (i)(f) dr

in which 7, and ¢, represent the times of the neigh-
boring extrema after reaching steady flow state. The
Simpson one-third method is employed to integrate
equation (7) numerically. The NCYCLE in the figures
indicates the number of time intervals per vibrational
period (2n/w) used in the computation. For counting
the peak of the vibrational force w./(2G)sin wr
exactly in the computation, the NCYCLE must be a
multiple of 4. The results of the extrema of the Nusselt
number and the minimum stream function with
different meshes of 10x10. 13x 13, 16x16 and
18 x 18, respectively, are shown in Figs. 2(a) and (b).
From the results, the mesh 10x 10 elements and
13 x 13 elements are found to be valid for the above
two vibrational cases, respectively. The results of the
different NCYCLEs with a 10 x 10 element mesh for
case [ and a 13 x 13 element mesh for case I are shown

(7)

Table |. Comparisons of the results of the present study with De Vahl Davis [27)

Ra = 10°
De Vahl
Bench- Davis Authors Authors Authors
mark 61 x 61 l6x 16 13x13 10 %10
solution uniform  elements elements  elements
16.32 16.67 16.395 16.40 16.40
(2.14%) (0.46%) (0.49%) (0.49%)
64.63 65.81 64.789 64.28 64.24
(1.82%) (0.24%) (0.54%) (0.60%)
0.850 0.852 0.854 0.838 0.839
219.36 214.64 219.39 2206.17 220.98
(2.15%) (0.01%) (0.37%) (0.70%)
0.0379 0.0396 0.04167 0.0405 0.0357
8.800 8.794 8.851 ¥.855 8.926
(0.07%)  (0.57%)  (0.62%)  (1.43%)
8.799 8.823 8.818 8.817 8.832
(0.07%) (0.21%) (0.20%) (0.37%)
8.817 9.035 8.935 9.036 9,230
(2.47%) (1.32%) (2.48%) (4.68%)
17925 18255  17.930 18207 18.600
(1.84%)  (0.03%)  (1.57%)  (3.76%)
0.0378 (0.0523) 0.04167 0.0441  (0.0357)
0.989 1.002 0.987 0.988 1.013
(1.31%) (0.2%) (0.10%) (2.43%)

1.0 1.0 1.0 1.0 1.0
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{a)
14.0 —
13.0F Ro=10® w=800 ]
12.0F G=10° 13013 Bements
5 10.0F /\
2 80F / -
6.0 : - :
4.0 Ra£1g* w=810 i
2.0F G=10° 10x10 Blements
0 O H i i }
16 24 32 40 48 64

{b})
110.0
100.01ox10 Sements
= |
+ B0.0F w=810
E L
> o Max
= 60.0f 3 —
B G=10%
40.0+ w=800
20.0F L+ —
0.0 i / | 1 |

NCYCLE

Time intervals per cycle

16 24 32 40 48

64

{a)
12.0
| 0 Max
S 10.0 o g /
Z BOF s \ /
6.0 “t_
O N
2.0 G=10 =800
0.0 jw=810 1
10x10 13x13 16x16 18x18
Elements
(b)
110.0 o 31
100.0 o o Ra=10"
L N . G=10°
E 80.0F - T w=810
s | 8=
— 60.0} 2™
| NCYCLE=64
40.0
- R0=10’ < 5 )
20.0}-6=10° © ©
w=800 & o
0.0 . L
10x10  13x13 16x16 18x18
Elements

F1G. 2. Numerical results for various meshes. (a) Nusselt
numbers. (b) The minimum values of stream function.

in Fig. 3. The results show clearly that NCYCLE = 64
and NCYCLE = 48 are, respectively, enough for solv-
ing the problems of cases I and II accurately.

RESULTS AND DISCUSSION

In Fig. 4, the variations of the values of the
maximum (1), average (O) and minimum (A) of
Nu, |¥,.n| and W, with the frequency w for the case
of Ra=10° G = 10° are shown. In Fig. 4(a), the
dashed lines which are obtained from the following
correlating equation represent the values of the
maximum, average and minimum of the total Nusselt
numbers of the quasi-static state:

Nu = max (1.0, 0.1388 | R]%392%)

R = Ra+w,/(2G) sin wr. (8)

The data used to derive equation (8) are obtained
from the total Nusselt number of the left wall at the
statically steady state of the Rayleigh numbers of 10°,
10° and 10°. In Fig. 4(a), the Nusselt numbers are in
good agreement with the dashed lines in the range of
o < 10, which means that static convection is domi-
nant and the vibration is regarded as a disturbance

NCYCLE
Time intervals per cycle

FiG. 3. Numerical results for various time steps. (a) Nusselt
numbers. (b) The minimum values of stream function.

added to the fluid flow. This region is called the quasi-
static convection region.

According to the results of Fu and Shieh [24], the
reason for the total Nusselt number deviating from
the dashed lines in this region may be supposed to be
due to the response of the thermal boundary layer
near the vertical wall which cannot catch up with the
variation Ra(r). In turn, while the following inequality
is determined, the deviation between the total Nusselt
number and the dashed line will occur:

RAD | ppr2| Ra(a)) 2, ©)
dz
in which Ra(r) = Ra+w./(2G)sin wr in this paper.
Then
dR
YO\ clwt@Ged.  (0)

In this region, the vibration is regarded as a dis-
turbance to the static convection, and

Ra(1) ~ Ra (1

Substituting equations (10) and (11) into (9), the fre-
quency  is about 24, which is close to the frequency
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(a)
7.0
0 Max. Ra=10% T
6.0 0o avg. 6
5.0 A Min, G=10 _J
3J
pd
(b)
7.0
6.0
e o L .i"\‘
o 9.0
z
S5 4.0
e
3.0F .
0 Ra=10
2. c=108
1.0
ST MR AT
0.0 2 3 4
10 10 10
W
(c)
120.0
:;gg; O Max. Ra=10*
. O Avg. 6
S 6=10
0.0} A Min-
—& 80.0
E 7
5 0.0
60.0
50.0
40.0
30.0
20.0
10.0]
0.0
10 100 102 10 10
W
(d)
50.0 "
- 0 Max. Ra=10
% 4O.OL- O Avg. 6
£ 300 A Min, G=10
> 200}
10.0
0.0
1.0 10t 102 10° 10t
w

FiG. 4. Effects of the vibration frequency on thermal con-

vection for Ra = 10*, G = 10°. (a) The variations of Nusselt

number with the vibration frequency. (b) The jump phenom-

enon of average Nusselt number. (¢) The variations of the

minimum value of stream function with the vibration fre-

quency. (d) The variations of the maximum value of stream
function with the vibration frequency.

W. S. Fu and W. J. SHIEH

(~10) obtained from the numerical result shown in
Fig. 4(a).

For 10 < @ < 110, the values of Nusselt number
begin to deviate from the values calculated from equa-
tion (14) and the former are larger than the latter.
Since the Rayleigh number is small, then the vibration
affects and enhances the heat transfer rate even in the
low frequency range. According to the domination of

vibration convection the cointor_clackwicn rote
VIiUiQuivie LUdlvyoo v, i Cuuniigi \.,IU\.I\WI)\, lUldllHi_

flow (Fig. 4(d)) not only forms, but also has strength
of the same order of magnitude as the clockwise rotat-
ing flow (Fig. 4(c)). This region is called the vibration
conveclion region.

For 110 < w < 900, the resonant vibration phenom-
enon occurs. which causes the strength of |¥ .| to
increase significantly (Fig. 4(c)) and the heat transfer

eota Aiod e Lo colino 1 o
raic \1 15 4ajj 16 oc enhanced l\,lllall\d[)ly

l fHS
region is called the resonant vibration convection
region. The increasing rate of Nusselt number in this
region is about 2.7 times that in the vibration con-
vection region. The maximum value of | ,,| occurs
at @ = 900. which is defined as the resonant fre-
quency.

For 900 < w < 2310, the Nusselt number decreases
abruptly, and the intensity of the clockwise cell (Fig.
4(c)) decreases rapidly and approximately equals the
intensity of the counter-clockwise rotating cell (Fig.
4(d)). Then the flow pattern changes from the res-
onant vibration convection region to the high fre-
quency vibration convection region. This region is
called the intermediate convection region. In order to
examine in detail the drastic variation (jump phen-
omenon) of the Nusselt number, which occurred in
the weightlessness condition [20] and in a damped
Duffin’s spring {28], at the border between the res-
onant and high frequency vibration regions, the solu-
tions for 400 < w < 3310 are solved by the decreasing
frequency process from 3310 to 400 and compared
with the previous solutions, which are solved by the
increasing frequency process. The results are shown
in Fig. 4(b), where open circles () represent the
solutions obtained by the increasing frequency pro-
cess and plus signs (+) represent the solutions
obtained by the decreasing frequency process. The
results show that while w > 1110 or w < 600, the aver-
age Nusselt numbers obtained by both processes are
the same. However, for 600 < « < 1110, the average
Nussell number obtained by the increasing frequency
process is larger than that obtained by the decreasing
frequency process. The solutions obtained by the
decreasing frequency process at o = 1210, 1110, 900,
810. 710 and increasing frequency process at
@ = 1110, 1210 are aperiodic.

For o > 2310, the vibration frequency is high, and
the fluid flow becomes a multi-frequency motion,
which causes the difference between the maximum and
minimum Nusselt numbers 1o be enlarged again. The
values of |W,,.] (Fig. 4(c)) and W¥,.. (Fig. 4(d)) are
almost equivalent, which means that the vibration
convection is dominant, and contrarily the static
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gravitational convection is regarded as a disturbance
added to the flow. This region is called the high fre-
quency vibration convection region.

In Fig. 5 the variations of the values of the
maximum ([7]), average (O) and minimum (A) of
Nu, |V in] and W, with the frequency w for the case
of Ra=10°% G = 10° are shown. The dashed lines
are obtained from the correlation, equation (8). The
values of the average Nusselt number are consistent
with the dashed line in the range of w < 600 (Fig.
5(a)); in the meantime the maximum and minimum
values of |¥,,,,| are symmetric to the average value
(Fig. 5(b)), and the value of ¥, is zero which indi-
cates that the counter-clockwise cell does not exist
(Fig. 5(c)). The vibration motion is regarded as a
disturbance added to the static convection. This
phenomenon is similar to the quasi-static convection
region of the case of Ra = 10*, G = 10° mentioned
above.

Calculating equations (9), (10) and (11), mentioned
above, the frequency approximately equals 770, which
is also close to the frequency (~600) obtained from
the numerical result shown in Fig. 5(a).

For 600 < w < 800, the total Nusselt number starts
to deviate from the dashed line. Due to the high
Rayleigh number situation, the maximum and mini-
mum values of |W,,;,| are symmetric to the average
value of |W¥ .|, and the value of ¥, is near zero.
This region is called the vibration convection region.

For 800 < w < 3000, the variations of Nu, |Vl
and W,,, are drastic, and the region is called the
resonant vibration convection region. ¥, appears
explicitly in this region, but its value is smaller than
that of [¥,,|. For the high Rayleigh number situ-
ation, the resonant vibration flow does not increase
the Nusselt number very much, like the Ra = 10%,
G = 10° case, and the average Nusselt number
is smaller than that of the quasi-static convection
region. The maximum value of |¥,.,| occurs at
@ = 900, which is defined as the resonant frequency.

For @ > 3000, the average Nusselt numbers are
nearly invariant and the maximum and minimum
Nusselt numbers increasingly converge to the average
value. Because the Rayleigh number is high, the effect
of the high frequency vibration on the heat transfer
rate is not significant. The intensity of |W,,;,] is still
larger than that of ¥,,, due to the strong thermo-
gravitational convection. This region is called the high
frequency vibration convection region. Since the
flow induced by the static convection is strong, the
intermediate convection region mentioned for the
Ra = 10°, G = 10° case cannot be found in this case.
This is another characteristic of the high Rayleigh
number situation.

Shown in Fig. 6 are the variations of the Nusselt
number and stream function with the vibration fre-
quency for the Ra = 0, G = 10° case, which means the
weightlessness situation. Except for the quasi-static
region, the variations of the Nusselt number and
stream function are almost consistent with those of
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12.0
11.0
10.0
9.0’
8.0
7.0
6.0
5.0
4.0
3.0

Nu

(b)

110.0

100.0
90.0
800
700
60.01
50.0
40.0
30.0
20.0¢
10.0

T

Ra=10°8
G=10®

0 Max.
O Avg.
A Min.

I\Pminl

{c)

55.0
50.0
450
40.0
350
30.0
25.0
200
15.0
100

5.0

0.0
10" 102 10° 10t

w

FiG. 5. Effects of the vibration frequency on thermal con-

vection for Ra = 10°, G = 10°. (a) The variations of Nusselt

number with the vibration frequency. (b) The variations of

the minimum value of stream function with the vibration

frequency. (c) The variations of the maximum value of
stream function with the vibration frequency.

Ra=10°%
6=10°
O Max.

O Avg.
A Min.

T

\'/max
-+

T

the Ra = 10*, G = 10° case in the whole frequency
range. The four regions are: (i) the vibration con-
vection region for @ < 100; (ii) the resonant vibration
convection region, for 100 < w < 900; (iii) the inter-
mediate region for 900 < w < 2300; and (iv) the high
frequency region for @ > 2300. The behavior of the
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Fig. 6. Effects of the vibration frequency on thermal con-

vection for Ra = 0, G = 10° (a) The variations of Nusselt

pumber with the vibration frequency. (b) The jump phenom-

enon of average Nusselt number. {(¢) The variations of the

minimum value of stream function with the vibration fre-

quency. {d) The variations of the maximum value of stream
function with the vibration frequency.
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stream function in the resonant vibration convection
region is opposite to that of the Ra = 10%, G = 10°,
case, which is caused by the different initial condition
in the computation. Similar to the Ra = 10*, G = 10
case, the jump phenomenon also occurs in this case.
The solutions obtained by the increasing (circle )
and decreasing (plus +) frequency processes are
shown in Fig. 6(b), and are similar to those of Fig.
4(b).

The isotherms and streamlines of case 1 (Ra = 107,
G = 10°) with the vibration frequencies 110, 900, 1510
and 5310 are, respectively, shown in Figs. 7 10. In
Fig. 7. the thermo-gravitational convection is wcak
due to the low Rayleigh number ; therefore the effect
of vibration on the fluid How is remarkable even for
the low frequency (m = 110) situation. As a result, the
cells with opposite rotating directions are co-existent
and the regions of the isotherms not only gather
densely near the lower and higher regions of the left
and right vertical walls (Fig. 7(b)). respectively, but
also the entirely opposite regions at a certain phase
(Fig. 7(d).

In Fig. 8. @ = 900 is in the resonant vibration range.
The isotherms gather densely near the vertical walls
and the fluid flows mainly in the clockwise divection

Q
3 n/2
Nu=2.42
o
b x
@ Nu=4.22
Q
Y 3n/2
®
Nu=2.81
f." 2
'
@ Nu=3.04

Isotherms (d) Streamlines

Fi. 7. Isotherms and streamlines for Ru = 10%, G = 10°,
w= 0. (a)o =2n/2, (byox = n, {C) = 3n/2, (d) & = 2.
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an/2
Nu=5.81

Isotherms (d) Streamlines

F1G. 8. Isotherms and streamlines for Ra = 10°, G = 10°,
@ =900. (a) x = 1/2, (b) & = m, (¢) & = 3n/2, (d) & = 2.

like a rotating flow around the core region. The con-
clusion can be drawn from the results that while the
resonant phenomenon occurs, the vibration motion
plays the dominant role and the influence of thermo-
gravitational convection is negligible. Consequently,
the total Nusselt number is constantly much larger
than that of static convection (Nu = 2.24 for Ra = 10°
[26]) during the whole period.

In Fig. 9, the vibration frequency @ equals 1510.
The intensities of the counter-clockwise and clockwise
cells have almost the same order and the difference in
the total Nusselt number at every different phase is
small. The distributions of isotherms shown in the
figures are similar, and the regions of the isotherms
gathering densely are in the middle region of the ver-
tical walls.

In Fig. 10, the vibration frequency w equals 5310.
The period of fluid flow is 12 times the vibration
period (from Fig. 15(¢)). Since the variations of iso-
therms and streamlines are qualitatively similar in
every vibration period, the results of the one vibration
period are shown in the figures. According to the
high frequency w, the tendency of the clockwise and
counter-clockwise cells forming individually is more
apparent than that of the low frequency situation.
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n/2
Nu=4.13

Nu=4.07

n/2
Nu=4.02

2n
Nu=4.14

Isotherms (d) Streamlines

FiG. 9. Isotherms and streamlines for Ra = 10°%, G = 10°,
w = 1510. (@) @ = /2, (b) a = 7, (¢) & = 3/2, (d) x = 2m.

Figures 11-14, for case I (Ra = 10°%, G = 10°) with
frequencies of w = 200, 800, 1500 and 9000, respec-
tively, indicate the distributions of the isotherms and
streamlines of a period of fluid flow which includes
one or several periods of vibration motion.

In Fig. 11, due to the situation of high Rayleigh
number (Ra = 10%) and low frequency (w = 200),
thermo-gravitational convection is dominant, which
causes the variations of streamlines and isotherms to
be minute with respect to static convection [26]. In
Fig. 12, the vibration frequency w is 800 and is near
to the resonant frequency, so the effect on the fluid
flow becomes increasingly apparent and the variations
of the streamlines and isotherms are rather different
from those of static convection. Accompanying the
vibration motion, the intensity of the stream function
varies periodically and the isotherms in the core
region swing to and fro. Because the development of
fluid flow lags to the vibration motion, the largest and
smallest Nusselt numbers no longer occur near the
phases of 7/2 and 3n/2, respectively. This phenomenon
is similar to that of natural convection in an enclosure
under the time-dependent acceleration situation [24].
Besides, the positive values of the stream function
begin to appear but the values are negligibly small. In
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Isotherms (d) Streamlines

Fi. 10. Isotherms and streamlines for Ra = 10%, G = 10°,
@ = 5310. (a) o = 7/2, (b) & = 7, (¢) & = 37/2, (d) 2 = 27.

Fig. 13, the vibration frequency w is enlarged to 1500,
which is in the resonant range. In the figures, two
consecutive vibration periods are combined as a
period of the fluid flow. The first period is from Figs.
13(a) to (b) and the second period is from Figs. 13(c)
to (d). The effect of vibration on the fluid flow is more
remarkable than the former situations. The isotherms
swing to and fro drastically, and some of them form
closed regions (Figs. 13(b) and (c)). The value of
|Wominl (Fig. 13(c), |W.in] = 66.3) is greater than that
of static convection by several times (|| = 16.7
[26]). Furthermore, the velocity boundary layer no
longer exists, and the fluid flows nearly uniformly
around the enclosure (Fig. 13(c)).

When the vibration frequency w is raised to 9000,
the results shown in Fig. 14 are similar to those of the
static case [26]. The cause is considered to be that the
period of high frequency vibration is too short; in
turn the variation between enhancing and weakening
buoyancy force is too short, which causes the fluid
flow to be unable to catch up with the variation.
Consequently, the effect of high frequency vibration
on the fluid flow is like a disturbance which somewhat
enhances thermo-gravitational convection added to
the fluid flow.

W. S. Fu and W. J. SHIFH

©:0.0(0.1)1.0 v:—18.0(1.8)0.0
% S n/2
o (] Nu=9.68
0:0.0(0.1)1.0
n
Nu=9.22
3n/2
Nu=8.28
6:0.0(0.1)1.0
: o
@ Nu=8.81
(d) .
Isotherms Streamlines
F16. 11. Isotherms and streamlines for Ra = 10, G = 10",

w=200. (&) =n/2, (byx =7 (¢} 2 = 3n/2, (d) « = 27.

Since the Rayleigh number (Ra = 10°) is high,
which causes thermo-gravitational convection to be
strong, then the isotherms constantly gather densely
near the lower region of the left wall and the higher
region of the right wall during the variation of
vibration frequency from low to high.

The variations of the Nusselt number and stream
function with the phase angle « are shown in Figs. 15
and 16 for case I (Ra = 10%, G = 10°) and case II
(Ra = 10°, G = 10°), respectively. In Fig. 15(a), the
region (w = 110) isin the vibration convection region,
and the phase shift between the maximum values of
W and || is nearly =. The values of W,.,, and
W..in appear alternatively. In Fig. 15(b), w = 900 is in
the resonant vibration convection region. The clock-
wise rotating flow (W) 1s much stronger than the
counter-clockwise rotating flow (W, ). The phase
shift between the maximum values of Nu and |¥,,,|
approximately equals 7/2. As the frequency increases
up to 1110 (Fig. 15(c)), the Nusselt number and
stream function vary irregularly. The results cannot be
improved even if the mesh and time step are increased
massively. The exact periodic solutions are hardly
found in spite of calculating hundreds of vibration
periods. The results shown in the figure are com-
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n/2
Nu=10.22

=10
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N

Isotherms (d)

Fi6. 12. Isotherms and streamlines for Ra = 10°%, G = 10°,
w == 800. (@) = n/2, (B a = =, (¢} & = 3%/2, (d) o = 27.

=

Streamlines

paratively periodic ones. The data used in equation
(13) are about 16 periods. The results of @ = 1210 in
this case are also irregular and similar to Fig. 15(c).
In Fig. 15(d), @ = 1510, which is in the intermediate
region, and the difference between the maximum and
minimum Nusselt number is smaller than 5% ; the
phase shift between the maximum values of ¥,,,, and
W min} €quals 7. In Fig. 15(e), @ equals 5310, which is
in the high frequency vibration convection region. A
multi-frequency response occurs, and a flow period
consists of approximately 12 vibration periods. It is
noted that the variation of the Nusselt number is small
in every vibration period, but is large in one flow
period. This phenomenon occurs when the frequency
is farger than 3310.

Figure 16 shows the variations of the Nusselt num-
ber and stream function with the vibration phase angle
a for case Il (Ra = 10% G = 10°). In Fig. 16(a), in
the region of quasi-static convection (w = 200), the
Nusselt number and flow intensity (|¥,,;, ) vary nearly
in-phase with the vibration. In Fig. 16(b), & = 800,
since the variation of the thermal boundary layer lags
the vibration motion, and the maximum Nusselt
number does not occur at the maximum value of
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Nu=10.48

Nu=7.49

n
Nu=9.10

in
Nu=8816

Isotherms (9) Streamlines

Fic. 13. Isotherms and streamlines for Ra = 10%, G = 105,
w=1500. (@) a ==, (b) a =27, (c) o = 37, (d) o = 4n.

the stream function. In Fig. 16(c), the frequency w
(=900) is in the resonant vibration region. The flow
varies irregularly even if the mesh and time step are
increased massively. This phenomenon is similar to
that of Fig. 15(c). In Fig. 16(d), the frequency w
(=1500) is still in the resonant vibration region, the
period of the flow is twice that of the vibration period
and the phase shift between the maximum Nusselt
number and the vibration is nearly n/2. In Fig. 16(¢),
@ = 9000, which is in the high frequency vibration
region, the phase shift between the maximum Nusselt
number and the vibration approaches n, and ¥, and
W in are out-of-phase with 7.

THE PRELIMINARY ESTIMATION FOR THE
RESONANT VIBRATION FREQUENCY

In the resonant vibration convection region
(o, = 900 for Ra = 10*, G=10° and w, ~ 900 for
Ra =10°%, G = 10°, there is no velocity boundary
layer, instead of the fluid flowing nearly uniformly
around the enclosure, the main rotating direction is
almost invariant. As for the isotherms, near both ver-
tical walls the isotherms gather densely and are par-
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FiG. 14, Isotherms and streamlines for Ra = 1",
=9000. (@) a=n/2, (DY a=n, () o= 3n/2, (d) o = 2m.

G = 10%

allel to the walls, in the core region the isothermal
bands are distorted and the high isothermal band
apparently extends to the right upper region.

While the resonant phenomenon occurs, the fre-
quencies of the flow and the vibration are the same.
The resonant period of the flow can be considered as
the time of the fluid flowing one circle around the
enclosure. However, the direction of the acceleration
induced by the vibration motion alternates oppositely
once during a period; in turn, the direction of the
acceleration is the negative y-axis in half a period and
the positive y-axis in another half period.

Consequently, the flowing motion of the fluid in the
resonant vibration convection region can be described
as follows. The fluid first flows from the left lower
region ; at this time the fluid is hot and the direction
of the acceleration is the negative y-axis, then the
rotating direction of the flow is clockwise. At the end
of the first half period, the fluid must flow to the
right upper region (half path of a circle around the
enclosure) and the direction of the acceleration will
change to the positive y-axis. In order to keep the
rotating direction invariant, the fluid must maintain
a hot temperature condition In the right upper region

J. SHiEH

to synchronize with the opposite direction of the accel-
eration.

Based upon the phenomenon mentioned above and
the energy equation, the following results can be
obtained from the scale analysis method. In the core
region

T~AT=T,~T.

t~T =27/
Xy~ L
w, v~ V*,
Then
8T+ 6T ﬁT aT otT
T i ST
ot ox 6y =M oy + ox’?
AT V*AT AAT
r L r
% ( 2
) ot_F - ,chﬁ, = ay
L L- L°Q o

For the resonant vibration flow, V*I' ~ L, then

VI
L

Hence, it is suggested that the energy balance occurs
mainly between the heat capacity and convection
terms at the resonant vibration state. Consequently,
the variation of the thermal diffusion term (2n/w)
must be smaller than that of the convection or heat
capacity term, and 2n/w < 1.

From the viewpoint of dynamics, first consider the
y-direction momentum equation inside the Stokes
layer 8,. which is caused by the vibration oscillating
flow [29]
dav oP B8

v __op ¢ 13
i o tia 2+q/3AT+bQ BATsinQr  (13)

X~ 8, =4.5)2v/Q)

Vo~ L

t ~ Q. (14)

The magnitudes of the order for the inertia and vis-
cous terms are »/ and vo/x?, respectively

inertiaterm  4.5°x2

e > |.

viscous term 7

The inertia term in the Stokes layer is larger than the
viscous term. The following equation can be deter-
mined :

inertia term ~ buoyancy term

do
0 L bQ2BAT sin Qr+gBAT.

& (13)

The resonant phenomenon is caused by the oscil-
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FiG. 15. The variations of the Nusselt number, the maximum and minimum values of stream function with
the vibration phase angle () for Ra = 10%, G = 10°. (a) @ = 110, (b) ® = 900, (c) w = 1110, (d) w = 1510,
{e) w = 5310.

lating flow induced by the vibration, and the static
gravity somewhat affects the resonant frequency.
Therefore, equation (15) can be expressed as

dv

q, ~ PBAT sin Q1 (16)

v ~ bQBAT cos Q. a7

At resonant state, the flow frequency is equal to the
vibration frequency; thus the following equation is
determined :

2n/Q,
4L = J o] dt. (18)
0

Substituting equation (17) into equation (18) and
solving the resonant frequency Q,
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F1G. 16. The variations of the Nusselt number, the maximum and minimum values of stream function with
the vibration phase angle (x) for Ra = 10°. G = 10°. (a) w = 200, (b) ® = 800, (c) w = 900, (d) » = 1500,

(e) w = 9000.
L = bBAT (19)  Table 2. Comparisons of the resonant frequency proposed
by the authors (\/(2G)-Pr) with those of Yurkov [20]
(Pr=1)
o, = J(2G) Pr Qo oo TER
. . G Data from ref. {20] JQG)-Pr
in which w, = Q,L%/a. B [ S
Solving equation (20), the value of the resonant 9% 10* 272 424
P
frequency w, for the G = 10°, Pr = 0.71 case is about 1.6 % 105 ;;g ;83
1000, which is in agreement with those values obtained %g i %gs 290 248

from the numerical method in this study. In Table2, __
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the solutions obtained from equation (20) are com-
pared with those of Yurkov [20] (from Fig. 14 of
ref. [7]). The deviations between both solutions are
allowable except for the G = 9 x 10 case.

CONCLUSIONS

The study of thermal convection in a two-dimen-
sional square enclosure induced simultaneously by
gravity and vibration is investigated by a penalty finite
element method. Several conclusions can be drawn.

(1) According to the individual characteristic, the
thermal convection can be divided into five regions:
(i) quasi-static convection; (ii) vibration convection;
(iii) resonant vibration convection; (iv) intermediate
convection; and (v) high frequency vibration con-
vection.

(2) In the high Rayleigh number case (Ra = 10%),
the gravitational thermal convection dominates, and
the vibration does not enhance the heat transfer rate
remarkably. In contrast, in the low Rayleigh number
case (Ra = 10%), except in the quasi-static convection
region, the vibration thermal convection is dominant,
and the vibration enhances the heat transfer rate sig-
nificantly.

(3) According to Fu and Shieh [24], the quasi-static
convection region can be determined approximately
by the following relation :

® = Pr'? Ra¥*(2G) ",

(4) The resonant frequency w, derived from the
preliminary estimation can be expressed as w =
/(2G) Pr. The results predicted by the equation are
in agreement with those obtained from numerical
methods.
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ETUDE DE LA CONVECTION THERMIQUE DANS UNE CAVITE INDUITE
SIMULTANEMENT PAR GRAVITE ET VIBRATION

Résumé-—On étudie numériquement la convection thermique dans une cavité bidimensionnelle carrée, en
présence de gravité et d’une vibration verticale. Une méthode d’¢léments finis avec un algorithme d’itération
Newton-Raphson et un schéma de différences rétrograde avec le temps sont adoptés pour résoudre les
équations. Pour étudier les effets de la fréquence de vibration et du nombre de Rayleigh sur la convection
thermique, la fréquence varie entre 1 et 10” et on considére trois valeurs différentes du nombre de Rayleigh
soit 0. 10% et 10° Daprés les résultats, la convection thermique peut étre divisée en cing régions: (1)
convection quasi-statique, (2) convection de vibration. (3) convection de vibration résonante. (4) con-
vection intermédiaire et (5) convection de vibration & haute fréquence. Au nombre de Rayleigh éleve
{= 10%, la convection thermique gravitationnelle domine et fe mouvement de vibration n'augmente pas
sensiblement le flux de chaleur transféré. Par contre, au faible nombre de Rayleigh. (= 10"). excepté dans
la région de convection quasi-statique, la convection thermique de vibration est dominante et la vibration
augmente significativement le transfert de chaleur. De plus, on propose deux méthodes analytiques pour
prédire les fréquences de la convection quasi-statique ct les régions de convection de vibration résonante.
Les valeurs prédites par les deux méthodes sont en accord avec celles obtenues par la méthode numerique.

UNTERSUCHUNG DER DURCH SCHWERKRAFT UND VIBRATION INDUZIERTEN
THERMISCHEN KONVEKTION IN EINEM HOHLRAUM

Zusammenfassung— Die durch dic gleichzeitige Einwirkung von Schwerkraft und vertikaler Vibration in
cinem zweidimensionalen quadratischen Hohlraum induzierte thermische Konvektion wird numerisch
untersucht. Eine Finite-Elemente-Methode mit einem Newton-Raphson-lterations-Algorithmus und ein
Riickwirtsdifferenzen-Verfahren fiir den Zeitterm werden bei der Lésung der bestimmenden Gleichungen
verwendet. Um den Einflul von Vibrationsfrequenz und Rayleigh-Zahl auf die Konvektion zu untersuchen,
wird die Frequenz von | bis 10 bei Rayleigh-Zahlen von 0, 10* und 10° variiert. Es zeigt sich, daB die
thermische Konvektion in fiinf Bereiche aufgeteilt werden kann: (i) quasi-statische, (i) Vibrations-, (in}
Resonanz-Vibrations-, (iv) intermedifire und (v) Hochfrequenz-Vibrations-Konvektion. Bei groBBer Ray-
leigh-Zahl (10°) dominiert die Gravitations-Konvektion. und die Vibrationen erhdhen den Wirmeiibergang
nicht merklich. Im Bereich 10* dagegen (ausgenommen im quasi-statischen Konvektions-Bereich) dominiert
die Vibrations-Konvektion. und der Wirmetibergang wird deutlich verbessert. Weiterhin werden zwei
analytische Methoden vorgeschlagen, mit denen die Frequenzen der quasi-statischen Konvektion, bzw.
der Gebiete mit Resonanz-Vibrations-Konvektion berechnet werden konnen. Die hierbei ermittelten Werte
stimmen mit den nach der numerischen Methode bestimmten {iberein.

UCCJIEJOBAHHUE TEIJIOBOI KOHBEKIIMHY B NTOJIOCTH 3A CYET CWJIBI TSDKECTH
1 BUBPALIMH

Anvotauus—HCIEHHO HCCNENYETCH TeNIOBas KOHBCKIAS B JABYMEPHO# KBAJPATHOH NIOJIOCTH 32 CYeT
COBMECTHOTO IEHCTBHS CHIIbI TAKECTH W BEPTHKAIbHON BHOpanny. /18 PEIUeHHs ONpPEeesIsIomuX ypas-
HEHHil MCTIOIB3YIOTCH METON KOHEYHBIX HIEMEHTOB C HTEPALHOHHBIM anroputMoM Huiotona-Padcona
M 0BpaTHas DPA3HOCTHAS CXEMa, YYHTHIBAIOWMAS BpEMEHHBIE WieHbl. JlIS YCTAHOBICHHA BIIHAHMN
YACTOTH BUGPALMH ¥ YHC/A Paies HA TENUIOBYIO KOHBEKIMIO B ITOJIOCTH 4acToTa BUOpaLmi Bapbupyercs
or 1 o 10* 1 paccMaTpHBAIOTCA TPH PA3NMYHBIX 3HaYeHuA yHcaa Pomes, pasusie 0, 10* 1 10°. B cooT-
BETCTBHH C TIOJIYYCHHBIMH PE3Y/ILTATAME TEIUIOBYIO KOHBEKIIHIO MOXHO Pa3fe/MTh Ha NATh obmactelt:
(1) xpasucTaTaveckas kounexims, (I1) subpokousexuus, (1) pesonancHas suOpoxosuBexuus, (IV) npome-
KYTOUHAs KOHBEKIHs ¥ (V) BEICOKOMACTOTHaA BROPOKOHBEKIMA. B ciyuae Bricoxoro uucna Panes (10%)
npeoGranaeT TPaBHTALMOHHAY TEIUIOBAS KOHBEKIHS ¥ BHOPAUMOHHOC ABIKCHHC HE NIPHBOIHT K 3HAYH-
TesnnuOl HHTeHCHUKANME Temonepenoca. B cayyae xe auskoro wucna Pajes (10*) Bcrony 3a MCKMIOuE-
HUeM OOJACTH KBA3MCTATHYECKOH KOHBEKUMH AOMMHMpYeT BHOpalMOHHAS TeIIOBAA KOHBCKIMA H
BUBPAIAOHHOE JBHXCHHE CYIHECTBEHHO YBEAMYMBACT CKOPOCTH TEIIOHEpEHOCA. Kpome toro, npensio-
KCHLI B2 AHAJIHTHYECKHX MCTOAA PACHeTa HacTOT i obJacTell KBA3UTATHYECKOH KOHBEKUMH H Pe30-
HaHCHO# BHOPOKOHBEKIHH. 3HAYCHMS, NOJYYCHHBIC NPH PacueTax ¢ HCHOML3OBAHMEM ITHX METOLOB,
COTNIACYIOTCH ¢ YACIICHHBIMHU PE3YALTATAMM.



