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Abstract-Thermal convection in a two-dimensional square enclosure induced simultaneously by gravity 
and vertical vibration is investigated numerically. A penalty finite element method with a Newton-Raphson 
iteration algorithm and a backward difference scheme dealing with the time term are adopted to solve the 
governing equations. In order to investigate the effects of the vibration frequency and Rayleigh number 
on the thermal convection in the enclosure, the vibration frequency is varied from I to lo4 and three 
different values of the Rayleigh number of 0, lo4 and IO6 are considered. According to the results. the 
thermal convection can be divided into five regions : (i) quasi-static convection ; (ii) vibration convection ; 
(iii) resonant vibration convection ; (iv) intermediate convection ; and (v) high frequency vibration convec- 
tion. In the high Rayleigh number (= 10’) case, the gra~tational thermal convection dominates, and the 
vibration motion does not enhance the heat transfer rate remarkably. In contrast, in the low Rayleigh 
number (= 104) case, except in the quasi-static convection region, the vibration thermaf convection 
is dominant, and the vibration enhances the heat transfer rate significantly. In addition, two anaIytic 
methods are proposed to predict the frequencies of the quasi-static convection and resonant vibration 
convection regions, respectively. The values predicted by the two methods are in agreement with that 

obtained from the numerical method. 

INTRODUCTION 

THE STUDY of natural convection in an enclosure has 
been investigated for decades due to its extensive 
applications in engineering, like solar energy systems, 
electronic cooling equipment, crystal growth pro- 
cesses, etc. However, most of the studies have con- 
centrated on the static case, in which the enclosure is 
fixed on an inertial frame and subjected to a constant 
gravity only. These kinds of problems have been 
reviewed extensively by Ostrach [l-3], Carton [4] and 
Yang [S]. However, there are many practical problems 
of natural convection in an enclosure occurring in the 
non-inertial frame which are caused by non-periodic 
(accelerating-decelerating) or periodic (harmonic 
vibration) motion. These kinds of problems are rather 
complicated and difficult ; besides, theoretical, numeri- 
cal or experimental investigations on such problems 
are comparatively few. 

In the past, Richardson [6] reviewed the effects of 
sound and wall vibration on heat transfer. Gershuni 
and Zhukhovitsky [7] surveyed the studies of 
vibrational convection under a zero gravity condition, 
Forbes ef al. [8] conducted experiments to investigate 
the enhancement of thermal convection heat transfer 
in a liquid-filled rectangular enclosure by vibration ; 
the results showed that the vibration frequency and 
acceleration were the dominant factors which affected 
heat transfer, and the effects of vibration amplitude 
and average velocity were minor. When the vibration 
frequency was close to the resonant frequency of the 
liquid column in the enclosure, the heat transfer rate 

increased very markedly and the value of enhance- 
ment was raised by almost 50% compared to the 
condition under no vibration. In the experimental 
study, Ivanova and Kozlov [9] considered vibration 
effects on the natural convection in a horizontal cyl- 
inder layer. According to the vibration intensity and 
the llow type, the flow field was divided into three 
regimes. In the first regime, laminar motion existed 
and the enhancement of heat transfer rate was minor, 
and in the second regime the development of a wave 
instability in the ascending flow near the heated cyl- 
inder was observed and the heat transfer character 
was similar to the first regime. In the third regime, 
the threshold development of the vibrational vortices 
occurred and the increase of heat transfer rate was 
remarkable. Ivanova [lo] studied the vibration effect 
on the cooling process of the fluid layer between the 
~on~ntric cylinders. When the wall tem~rature 
decreased abruptly, the results showed that increas- 
ing the vibration frequency decreased the cooling time 
of the fluid. Zavarykin ef al. [ll, 121 vibrated the 
fluid layer vertically or in parallel to its temperature 
gradient to investigate the effects of vibration on the 
stability of a hydrodynamic system. The results were 
in good agreement with the theory. As for the theor- 
etical studies of the related subject, Gershuni and Zhu- 
khovitskii [13] studied the stability of a horizontal 
layer of fluid on a plane with a periodically varying 
temperature gradient. They showed that the system 
could be described by the Hill equation with damping. 
Subsequently, the study was extended to the modu- 
lation of the vertical temperature gradient and the 
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NOMENCLATURE 

h vibration amplitude [m] Greek symbols 

CP specific heat [J kg ’ K ‘1 a thermal diffusivity [mz s ‘J 

9 broadest definition of the gravity. 11 thermal expansion coefficient [K ‘1 

g,+bfi’sin Rt [ms’] r period of vibration, 27c/R [s] 

9 0 standard gravitational acceleration, 0, thickness of Stokes layer, 4.5,i(2v/R) [m] 

9.8 ms 2 0 dimensionless temperature 

G vibration Grashof number, /i viscosity [kgm ’ s ‘1 
(/3hQ(T,- T,)L)‘/2V \ kinematic viscosity [mZ s ‘1 

k thermal conductivity [W m ’ K ‘1 P density [kgm ‘1 

L length of the enclosure [m] T dimensionless time 

NU Nusselt number y dimensionless stream function 

NU average Nusselt number y. m.,x,or,n,n1 maximum (or minimum) value 

NU, total Nusselt number of Y at a given instant state 

Nu,,,, local Nusselt number YJ “,dX (01111111,. Inill (“Irni,,) maximum (or 

P pressure [Pa] minimum) value of the time history of 

P* motion pressure [Pa] Y nldX ,o, m,nI in a flow period 
P dimensionless pressure 
PI Prandtl number, r/cc 

RU Rayleigh number, g&r,, - T,)L’/(av) 
Rn(r) time-dependent Rayleigh number, 

\g(t)B(Th- T,)L’i(rv) 
t time [s] 
T temperature [K] 

u, 2’ velocities of .Y and _V directions [m s ‘1 
U, V dimensionless velocities of x and ,t 

directions 

V* velocity scale of the resonant flow 

.Y, _t coordinates 

X, Y dimensionless coordinates. 

(!I dimensionless frequency of vibration, 
RL’,‘X 

R angular frequency of vibration [rad s ‘1. 

Subscripts 
c cold wall 
11 hot wall 
r resonant flow state. 

Superscript 
m iteration number. 

gravity, and they examined the destabilizing and sta- 
bilizing effect of parameter modulation on the con- 
vection [ 141. Zenkovskaya and Simonenko [ 151 used 
the time-averaged method to investigate the stability 
of fluid flow for high frequency vibration. Later, Ger- 
shuni et al. [16], Sharifulin [ 171 and Siraev [IS] used 
the above-mentioned method to study the vibrational 
thermal convection under the weightlessness con- 
dition in a rectangular, cylindrical enclosure and a 
heated cylinder in an unconfined fluid, respectively. 
Due to the high frequency assumption, many impor- 
tant phenomena. like the resonant state and the 

detailed variation of the heat transfer rate, cannot 
be investigated by solving time-averaged governing 
equations. However, Yurkov [19, 201 directly solved 
the Boussinesq-approximated governing equations to 
investigate the thermal convection in a square enclos- 
ure induced by finite-frequency vibration under the 
weightlessness condition. From the results of the aver- 
age Nusselt number, the parametric resonant 
phenomenon was found. Biringen and Danabasoglu 
[21] studied the effects of gravity modulation in a 
thermally driven rectangular enclosure for terrestrial 
and microgravity environments ; the results showed 
that the destabilizing and stabilizing effects of gravity 

modulation agreed with the theories of Gresho and 
Sani [22]. Biringen and Peltier [23] studied the three- 
dimensional Bernard convection with gravitational 
modulation and confirmed the synchronous, subhar- 
monic and relaxation oscillation response regimes 
described by the linear analysis of Gresho and Sani 
[22]. Also, Fu and Shieh [24] studied a square enclos- 
ure subjected to an accelerating and decelerating pro- 
cess. From the scale and mathematical analyses, the 
results showed that the heat transfer rate of the 
vertical wall could be delineated by the quasi-steady 
state when the Rayleigh number rate of variation 

]dRa(z)/dT] was less than the boundary response rate 
Pr”ZIRa(z)j2:2. As for the theoretical study of thermal 
convection induced by vibration and gravity in an 
enclosure, few such investigations have been con- 
ducted. Thus, knowledge of behavior in this field is 
important in many practical engineering problems. 

Hence, the aim of the study is to investigate numeri- 
cally the detailed heat transfer mechanism of thermal 
convection which is induced by gravity and vibration 
simultaneously in a square enclosure at steady state. A 
finite element method is used to solve the Boussinesq- 
approximated governing equations. Since in this case 
there are many factors that affect the heat transfer 
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mechanism and the vibration perpendicular to the 
temperature gradient is the most critical [21], we 
mainly consider the effects of the vertical vibration 
frequency on heat transfer mechanism. The range of 
vibration frequency w varies from 1 to 104, in which 
the resonant frequency is included. The accompanying 
factors of Rayleigh number are 0, 10“ and 106, respec- 
tively, the vibration Grashof number is fixed at 10’ 
and the Prandtl number is 0.71. Corresponding to the 
variations of vibration frequency from low to high, 
the flow field and heat transfer rate change from the 
quasi-static state region via a resonant region to a 
high frequency region, and in the resonant region the 
heat transfer rate varies drastically. The streamlines, 
isothermal lines and the variations of Nusselt number 
and stream function are also examined in detail. 

PHYSICAL MODEL 

An air-filled (Pr = 0.71) square enclosure with two 
horizontal adiabatic walls and two vertical constant 
temperature walls at which the temperature of the left 
wall is higher than that of the right wall is proposed 
in this study and a sketched model is shown in Fig. 
1. Initially (t = 0), the flow in the enclosure is at steady 
flow state with the corresponding Rayleigh number 
under the no vibration condition. Later (t > 0), the 
enclosure is subjected to a vertical vibration with the 
displacement -b sin (Qt) parallel to the direction of 
gravity. Then a non-inertial frame of reference trav- 
eling with the enclosure is used and the parameters 
b, R and tare respectively the displacement amplitude, 
angular frequency and time. 

In order to facilitate the analysis, the following 
assumptions and dimensionless variables are con- 
sidered. 

1. The fluid is Newtonian and the flow is two-dimen- 
sional laminar. 

2. The vibration velocity amplitude bR is not large 
and the flow is assumed to be incompressible [25]. 

3. The Boussinesq approximation is valid. 

bSIN(ut) 

FIG. 1. Physical model. 

t = t/(L’/a), x = x/L, Y = y/L, 

U = u/(a/L), V = v(a/L), ~9 = (T- T,)/(T, - T,), 

P = p*/(p,u*/L*), w = RL*/u, Pr = v/a, 

Ra = goBVh - Tc)L31(av), 

G = (@Q(T’,, - T,)L)*/2v*, (1) 

in which G is called the vibration Grashof number [7]. 
Consequently, the dimensionless governing equa- 

tions can be expressed as follows : 

g+g=o 
au ;i;+ug+vg=_ap ax+Pr($+tJ$) 

+Pr(Ra+w,/(2G) sin or)0 (2~) 

ae ~+u~+v~y=~+~. 
ay* (24 

The boundary conditions are as follows : 

x=0, u=v=o, 0=1 

X= 1, U= Y=6=0 

Y=O and Y=l, U= V=ae/aY=o. (3) 

SOLUTION METHOD 

The penalty Galerkin finite element method with a 
Newton-Raphson algorithm and a backward differ- 
ence scheme dealing with the time term which is simi- 
lar to the one used in Fu et al. [26] are employed to 
solve the governing equations (2a)-(2d). A nine-node 
quadratic isoparametric element is used to express the 
velocities and temperature terms which are integrated 
by 3 x 3 Gaussian quadrature, while the pressure term 
is expressed by the penalty function and integrated 
by 2 x 2 Gaussian quadrature. During the computing 
process, the convergent values of velocities and tem- 
perature of the lower frequency vibration situation 
are used as the initial values for the neighboring high 
frequency vibration cases. The velocities and tem- 
perature at steady flow state with the corresponding 
Rayleigh number under no vibration are regarded as 
the initial values of the lowest frequency vibration 
situation. As for the criteria for steady flow state under 
periodic motion, it is difficult to define them definitely. 
Then, except in the resonant region, while the fol- 
lowing criteria are satisfied the flow is regarded as 
reaching the steady flow state : 
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and 

Nu L.t7+ I - NuL,, 
NIA 

-~~ < 10 3 n=k-3,....k. (4b) 
I_.,,+ I 

NUL.,! represents the nth extremum (maximum and 
minimum) of the left wall Nusselt number in the time 
history. Equation (4b) indicates that the relative 

variations of four successive extrema of the left wall 
Nusselt number are less than 10 ‘. When the above 
criteria hold, the difference of energy balance of 
the enclosure is always less than 10 ’ and the error of 

mass conservation is always less than 10. ‘. 
The local Nusselt number Nu,,, on any vertical 

plane is defined as 

Nu,,,. = pC,,u(T- TJ-k g 
1 

/ [k(7’,,- T,)/L]. 
(5) 

The total Nusselt number Nu, on any vertical plane 
is defined as 

The dimensionless stream function Y is obtained by 
integrating U = aY/a Y with Y = 0 along the walls. 

For choosing the proper mesh and time step during 
the computation process, a series of numerical tests 

is carried out. The results for Ra = 104, G = iOh. 
w = 8 10 (case I) and Ra = IO’, G = 106, (1) = 800 

lYrnld/ 

u 
rndl., = 0 i 

Y 

V 
r”dX.I = 0 5 

X 

NU 

(case II) are presented. First, the meshes are tested 
with the static case (without vibration) and the results 
are compared with those of De Vahl Davis [27] in 
Table 1. This shows that the accuracy of the mesh 
IO x IO elements and 13 x I3 elements are valid for the 
Ro = IO4 and Ru = lOh cases, respectively. Next, the 
cases with vibration are considered and the results arc 

shown in Fig. 2. In the figure, the characters Max. 
Avg and Min represent, respectively, the maximum, 
time-averaged and minimum values of the different 
variables. The time-averaged value is calculated by 

in which t, and tz represent the times of the neigh- 

boring extrema after reaching steady flow state. The 
Simpson one-third method is employed to integrate 
equation (7) numerically. The NCYCLE in the figures 
indicates the number of time intervals per vibrational 

period (27r/o) used in the computation. For counting 
the peak of the vibrational force w,/(2G) sin tr)r 
exactly in the computation. the NCYCLE must be a 
multiple of 4. The results of the extrema of the Nusselt 
number and the minimum stream function with 
different meshes of 10x 10. 13x 13. 16x 16 and 
18 x 18, respectively, are shown in Figs. 2(a) and (b). 
From the results. the mesh 10 x 10 elements and 

13 x 13 elements are found to be valid for the above 
two vibrational cases, respectively. The results of the 
different NCYCLEs with a 10 x 10 element mesh for 
case I and a 13 x 13 element mesh for case II are shown 

Table I. Comparisons of the results of the present study with De Vahl Davis [37] 

Ru = IO4 Ra = IO” 

Bench- 
mark 

solution 

5.071 

16.178 

0.823 

19.617 

0.119 

2.243 

2.243 

2.238 

3.528 

0.143 

0.586 

I .o 

De Vahl De Vahl 
Davis Authors Authors Bench- Davis 

41 x41 13x 13 10 x 10 mark 61 x 61 
uniform elements elements solution uniform 

5.098 5.075 5.074 
(0.53%) (0.079%) (0.059%) 

16.182 16.106 16.095 
(0.025%) (0.44%) (0.51%) 

0.823 0.838 0.839 

19.509 19.526 19.621 
(0.55%) (0.46%) (0.02%) 

0.120 0.108 0.125 

2.234 2.254 2.259 
(0.40%) (0.49%) (0.71%) 

2.235 2.266 2.274 
(0.36%) (1.02%) (1.38%) 

2.242 2.246 2.248 
(0.18%) (0.36%) (0.45%) 

3.545 3.529 3.531 
(0.48%) (0.028%) (0.085%) 

0.149 0.162 0.161 

0.592 0.586 0.587 
(1.02%) (0.0%) (0.17%) 

1.0 1.0 I .o 

16.32 16.67 
(2.14%) 

64.63 65.81 
( I .829/a) 

0.850 0.852 

219.36 214.64 
(2.15%) 

0.0379 0.0396 

8.800 8.794 
(0.070/“) 

8.799 X.823 
(0.07%) 

8.817 9.035 
(2.47%) 

17.925 18.255 
(1.84%) 

0.0378 (0.0523) 

0.989 1.002 
(1.31%) 

I .o I .o 

Authors Authors Authors 
16x 16 13x 13 10x IO 

elements elements elements 

16.395 
(0.46%) 

64.789 
(0.24%) 

0.854 

16.40 16.40 
(0.49%) (0.49%) 

64.28 64.24 
(0.54”/0) (0.60%) 

0.838 0.839 

219.39 220. I7 220.98 
(0.01%) (0.37%) (0.70%) 

0.04167 0.0405 0.0357 

X.851 
(0.57%) 

8.818 
(0.21%) 

8.935 
(1.32%) 

17.930 
(0.03%) 

0.04167 

X.855 
(0.62%) 

8.817 
(0.20%) 

9.036 
(2.48%) 

IX.207 
( 1.57%) 

0.0441 

0.987 
(0.2%) 

I .o 

0.988 
(0.10%) 

I .o 

X.926 
( I .43[%1 I 

8.832 
(0.37%) 

9.230 
(4.68”/0) 

18.600 
(3.76”/0) 
(0.0357) 

I.013 
(2.43%) 

I .I) 
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$ 80.0 
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1 

Ra=lO* 
G=lO” 
0=810 

10x10 13x13 16x16 18x18 

Elements 

0.01 
16 24 32 40 48 64 

NCYCLE 
lime intervals per cycle 

FIG. 2. Numerical results for various meshes. (a) Nusselt RG. 3. Numerical results for various time steps. (a) Nusselt 
numbers. (b) The minimum values of stream function. numbers. (b) The minimum values of stream function. 

in Fig. 3. The results show clearly that NCYCLE = 64 
and NCYCLE = 48 are, respectively, enough for solv- 
ing the problems of cases I and II accurately. 

RESULTS AND DISCUSSION 

In Fig. 4, the variations of the values of the 
maximum (O), average (0) and minimum (a) of 

j% lyminl and ‘I’,,,‘,,, with the frequency w for the case 
of Ru = lo*, G = lo6 are shown. In Fig. 4(a), the 
dashed lines which are obtained from the following 
correlating equation represent the values of the 
maximum, average and minimum of the total Nusselt 
numbers of the quasi-static state : 

Nu = max(l.0,0.1388~R~~~302s) 

R = Ra+oJ(2G) sin oz. (8) 

The data used to derive equation (8) are obtained 
from the total Nusselt number of the left wall at the 
statically steady state of the Rayleigh numbers of 104, 
10’ and 106. In Fig. 4(a), the Nusselt numbers are in 
good agreement with the dashed lines in the range of 
o < 10, which means that static convection is domi- 
nant and the vibration is regarded as a disturbance 

0.01 ’ ’ ’ I I 
16 24 32 40 48 64 

NCYCLE 
Time intervals per cycle 

Zb) 
110.0 IV=== 

13x13 DNnmbr 

added to the fluid flow. This region is called the quasi- 
static convection region. 

According to the results of Fu and Shieh 1241, the 
reason for the total Nusselt number deviating from 
the dashed lines in this region may be supposed to be 
due to the response of the thermal boundary layer 
near the vertical wall which cannot catch up with the 
variation Ra(r). In turn, while the following inequality 
is determined, the deviation between the total Nusselt 
number and the dashed line will occur : 

in which Ra(r) = Ra-t wJ(2G) sin wz in this paper. 
Then 

(10) 

In this region, the vibration is regarded as a dis- 
turbance to the static convection, and 

Ra(z) N Ra. (11) 

Substituting equations (10) and (11) into (9), the fre- 
quency w is about 24, which is close to the frequency 
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70.0 

60.0 
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20.0 

10.0 ,.,d 
1.0 10' lo2 lo3 10' 

cd 

(d) 
50.0 

40.0 

30.0 

20.0 

10.0 

0.0 
1.0 10' lo* lo3 10' 

w 

FIG. 4. Effects of the vibration frequency on thermal con- 
vection for Ra = 104, G = 106. (a) The variations of Nusselt 
number with the vibration frequency. (b) The jump phenom- 
enon of average Nusselt number. (c) The variations of the 
minimum value of stream function with the vibration fre- 
quency. (d) The variations of the maximum value of stream 

function with the vibration frequency. 

(= 10) obtained from the numerical result show-n in 
Fig. 4(a). 

For 10 < w < 110, the values of Nusseit number 
begin to deviate from the values calculated from equa- 
tion (14) and the former are larger than the latter. 
Since the Rayleigh number is small, then the vibration 

affects and enhances the heat transfer rate even in the 
low frequency range. According to the domination of 
vibration convection. the counter-clockwise rotating 

flow (Fig. 4(d)) not only forms, but also has strength 
of the same order of magnitude as the clockwise rotat- 

ing tlow (Fig. 4(c)). This region is called the vibration 
convection region. 

For I 10 < (I) d 900, the resonant vibration phcnom- 
enon occurs. which causes the strength of /Y’,,,/ lo 
increase significantly (Fig. 4(c)) and the heat transfer 

rate (Fig. 4(a)) to be enhanced remarkably. This 
region is called the resonant vibration convection 
region. The increasing rate of Nusselt number in this 
region k about 2.7 times that in the vibration con- 

vection region. The maximum value of IT,,,,, j occurs 
at UI = 900. which is defined as the resonant frc- 
quency. 

For 900 < (o ,< 2310, the Nusselt number decreases 
abruptly, and the intensity of the clockwise ccl1 (Fig. 
4(c)) decreases rapidly and approximately equals the 
intensity of the counter-clockwise rotating cell (Fig. 

4(d)). Then the flow pattern changes from the res- 
onant vibration convection region to the high Trc- 
quency vibration convection region. This region is 
called the intermediate convection region. In order to 
examine in detail the drastic variation (jump phen- 
omenon) of the Nusselt number. which occurred in 
the w*eightlessness condition [20] and in a damped 
Duffin‘s spring [28], at the border between the res- 
onant and high frequency vibration regions, the solu- 
tions for 400 < w < 3310 are solved by the decreasing 
frequency process from 33 10 to 400 and compared 
with the previous solutions, which are solved by the 

increasing frequency process. The results are shown 
in Fig. 4(b), where open circles (0) represent the 
solutions obtained by the increasing frequency pro- 
cess and plus signs (+) represent the solutions 
obtained by the decreasing frequency process. The 
results show that while w 2 I I 10 or (11 < 600, the alrer- 
age Nusselt numbers obtained by both processes are 
the same. However, for 600 < (1) < 1110, the avcragc 
Nusseh number obtained by the increasing frequency 
process is larger than that obtained by the decreasing 
frequency process. The solutions obtained by the 
decreasing frequency process at 0) = 1210, 11 IO. 900, 
810. 710 and increasing frequency process :~t 
cu = 1 I IO. 1210 are aperiodic. 

For PJ > 23 10, the vibration frequency is high. and 
the fluid flow becomes a multi-frequency motion, 
which causes the difference between the maximum and 
minimum Nusselt numbers to be enlarged again. The 
values of IY,,,,,I (Fig. 4(c)) and Y,,,, (Fig. 4(d)) are 
almost equivalent, which means that the vibration 
convection is dominant. and contrarily the static 
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gravitational convection is regarded as a disturbance 
added to the flow. This region is called the high fre- 
quency vibration convection region. 

(al 

In Fig. 5 the variations of the values of the 
maximum (n), average (0) and minimum (A) of 

Nu, IYminI and Y,,,,, with the frequency o for the case 
of Ra = 106, G = lo6 are shown. The dashed lines 
are obtained from the correlation, equation (8). The 
values of the average Nusselt number are consistent 
with the dashed line in the range of w ,< 600 (Fig. 
5(a)); in the meantime the maximum and minimum 
values of IY,,,,,I are symmetric to the average value 
(Fig. 5(b)), and the value of Y,,,,, is zero which indi- 
cates that the counter-clockwise cell does not exist 
(Fig. 5(c)). The vibration motion is regarded as a 
disturbance added to the static convection. This 
phenomenon is similar to the quasi-static convection 
region of the case of Ra = 104, G = lo6 mentioned 
above. 

--_-- / 

w 

(b) 
110.0 

100.0 

Calculating equations (9) (10) and (1 l), mentioned 
above, the frequency approximately equals 770, which 
is also close to the frequency (N 600) obtained from 
the numerical result shown in Fig. 5(a). 

90.0 Ra=106 
_ 00.0 

i 

G=106 

.; 70.0 0 Max. 
& 60.0 0 Av9. 

A Min. 
50.0 

For 600 < o < 800, the total Nusselt number starts 
to deviate from the dashed line. Due to the high 
Rayleigh number situation, the maximum and mini- 
mum values of JY’,i,I are symmetric to the average 
value of lY’,i,I, and the value of Y’,,, is near zero. 
This region is called the vibration convection region. 

40.0 

30.0 

20.0 

10.0 

0.0 d 
IO' lo2 lo3 lo* 

w 

For 800 < w < 3000, the variations of Nu, IY,,,,,I 

and Y’,,, are drastic, and the region is called the 
resonant vibration convection region. Y,,, appears 
explicitly in this region, but its value is smaller than 
that of IY’,,,). For the high Rayleigh number situ- 
ation, the resonant vibration flow does not increase 
the Nusselt number very much, like the Ra = 104, 
G = IO6 case, and the average Nusselt number 
is smaller than that of the quasi-static convection 
region. The maximum value of lY,inI occurs at 
w = 900, which is defined as the resonant frequency. 

45.0 

40.0 

35.0 
3 30.0 

25.0 

For w 2 3000, the average Nusselt numbers are 
nearly invariant and the maximum and minimum 
Nusselt numbers increasingly converge to the average 
value. Because the Rayleigh number is high, the effect 
of the high frequency vibration on the heat transfer 
rate is not significant. The intensity of IY,,,,I is still 
larger than that of Y’,,, due to the strong thermo- 
gravitational convection. This region is called the high 
frequency vibration convection region. Since the 
flow induced by the static convection is strong, the 
intermediate convection region mentioned for the 
Ra = 104, G = lo6 case cannot be found in this case. 
This is another characteristic of the high Rayleigh 
number situation. 

20.0 

15.0 

10.0 

5.0 

0.0 
10' lo2 lo5 lo4 

w 

FIG. 5. Effects of the vibration frequency on thermal con- 
vection for Ra = 106, G = 106. (a) The variations of Nusselt 
number with the vibration frequency. (b) The variations of 
the minimum value of stream function with the vibration 
frequency. (c) The variations of the maximum value of 

stream function with the vibration frequency. 

Shown in Fig. 6 are the variations of the Nusselt the Ra = 104, G = lo6 case in the whole frequency 
number and stream function with the vibration fre- range. The four regions are: (i) the vibration con- 
quency for the Ra = 0, G = lo6 case, which means the vection region for o < 100 ; (ii) the resonant vibration 
weightlessness situation. Except for the quasi-static convection region, for 100 < w < 900 ; (iii) the inter- 
region, the variations of the Nusselt number and mediate region for 900 < o < 2300; and (iv) the high 
stream function are almost consistent wi;h those of frequency region for o > 2300. The behavior of the 
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Flc. 6. Effects of the vibration frequency on thermal con- 
vection for Ro = 0, G = IO’. (a) The variations of Nusscll 
number with the vibration frequency. (b) The jump phenom- 
enon of average Nusselt number. (c) The variations of the 
minimum value of stream function with the vibration fre- 
quency. (d) The variations of the maximum value of stream 

function with tke vibration frequency. 

stream function in the resonant vibration convection 
region is opposite to that of the f?a = 104, G I=; If)“, 
case, which is caused by the different initial condition 
in the computation. Similar to the Rn = 104. G = 10”’ 
case, the jump phenomenon also occurs in this case. 
The solutions obtained by the increasing (circle c;) 
and decreasing (plus +) frequency processes arc 
shown in Fig. 6(b), and are similar to those of Fig. 

4(b). 
The isotherms and streamlines of case I (Ru = iff’. 

G = IO”) with the vibration frequcncics 1 IO, 900. IS10 
and S?lf) are, respectively, shown in Figs. 7 IO. In 

Fig. 7. the th~r~no-~~.avitationai convection is weak 
due to tkc low RayIcigk number; therefore the CfTcor 
of vibration on the fluid flow is remarkable cvcn I’M 
the low frequency (0) = 1 10) situation. As a result. the 
cells with opposite rotating directions are co-existent 
and the regions of the isotherms not only gather 
densely near the lower and higher regions of the left 

and right vcrticai walls (Fig. 7(b)). respectively. hut 
also the entirely opposite regions at a certain pkasc 

(Fig. 7(d)). 
In Fig. 8. o = 900 is in the resonant vibration range. 

The isotherms gather densely near the vertical walls 
and the fluid flows mainly in the ctockwisc direction 

b) 

42 
Ml=242 

a 

Nu=4.22 

342 

NW=2.81 

Isothem td) Streamlines 
FK. 7. Isotherms and streamlines for Ro E 10’. (; = i#‘, 
w = I IO. (a) a = 2x12, (b) E = X, (c, i! = Dn:2, (d) 2 _ 2~. 
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FIG. 8. Isotherms and streamlines for Ra = 104, G = 106, FIG. 9. Isotherms and streamlines for Ra = lo“, G = 106, 
o = 900. (a) CI = x/2, (b) a = ft, (c) c[ = 3n/2, (d) tl = 27~. w = 1510. (a) c1 = 7c/2, (b) c( = R, (c) a = 3n/2, (d) CI = 271. 

like a rotating flow around the core region. The con- 
clusion can be drawn from the results that while the 
resonant phenomenon occurs, the vibration motion 
plays the dominant role and the influence of thermo- 
gravitational convection is negligible. Consequently, 
the total Nusselt number is constantly much larger 
than that of static convection (Nu = 2.24 for Ra = lo4 
[26]) during the whole period. 

In Fig. 9, the vibration frequency w equals 1510. 
The intensities of the counter-clockwise and clockwise 
cells have almost the same order and the difference in 
the total Nusselt number at every different phase is 
small. The distributions of isotherms shown in the 
figures are similar, and the regions of the isotherms 
gathering densely are in the middle region of the ver- 
tical walls. 

In Fig. 10, the vibration frequency w equals 5310. 
The period of fluid flow is 12 times the vibration 
period (from Fig. 15(e)). Since the variations of iso- 
therms and streamlines are qualitatively similar in 
every vibration period, the results of the one vibration 
period are shown in the figures. According to the 
high frequency w, the tendency of the clockwise and 
counter-clockwise cells forming individually is more 
apparent than that of the low frequency situation. 

s 
i 
6 

(4 

9 
i 6 

9 
i 
6 

9 
i 
6 

Isotherms cd) Streamlines 

*/a 

NU54.92 

2k 

N1w4.14 

Figures 1 l-14, for case II (Ra = 106, G = 106) with 
frequencies of w = 200, 800, 1500 and 9000, respec- 
tively, indicate the dist~butions of the isotherms and 
streamlines of a period of fluid flow which includes 
one or several periods of vibration motion. 

In Fig. 11, due to the situation of high Rayleigh 
number (Ra = 106) and low frequency (o = 200), 
thermo-gravitational convection is dominant, which 
causes the variations of streamlines and isotherms to 
be minute with respect to static convection [26]. In 
Fig. 12, the vibration frequency w is 800 and is near 
to the resonant frequency, so the effect on the fluid 
flow becomes increasingly apparent and the variations 
of the streamlines and isotherms are rather different 
from those of static convection. Accompanying the 
vibration motion, the intensity of the stream function 
varies periodically and the isotherms in the core 
region swing to and fro. Because the development of 
fluid flow lags to the vibration motion, the largest and 
smallest Nusselt numbers no longer occur near the 
phases of 7~12 and 3~12, respectively. This phenomenon 
is similar to that of natural convection in an enclosure 
under the time-dependent acceleration situation [24]. 
Besides, the positive values of the stream function 
begin to appear but the values are negligibly small. In 
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FIG. 10. Isotherms and streamlines for Ra = lo”, G = 10”. FK. I I, Isotherms and streamlines for Ru = 106, G = IO”, 
CJ = 5310. (a) a = n/Z. (b) r = TI. (c) r = 3n/2. (d) x = Tn. (II = 200. (a) a = ni2. (b) CI = TC. (c) r = 3~~0, (d) x = Zn. 

Fig. 13, the vibration frequency o is enlarged to 1500, 
which is in the resonant range. In the figures, two 
consecutive vibration periods are combined as a 
period of the fluid flow. The first period is from Figs. 
13(a) to (b) and the second period is from Figs. 13(c) 
to (d). The effect of vibration on the fluid flow is more 
remarkable than the former situations. The isotherms 
swing to and fro drastically. and some of them form 
closed regions (Figs. 13(b) and (c)). The value of 

IY,,,I (Fig. 13(c), (%‘,,,,,I = 66.3) is greater than that 
of static convection by several times (I’%‘,,,,,1 = 16.7 
[26]). Furthermore, the velocity boundary layer no 
longer exists, and the fluid flows nearly uniformly 

around the enclosure (Fig. 13(c)). 
When the vibration frequency w is raised to 9000. 

the results shown in Fig. 14 are similar to those of the 
static case [26]. The cause is considered to be that the 
period of high frequency vibration is too short; in 
turn the variation between enhancing and weakening 
buoyancy force is too short, which causes the fluid 
flow to be unable to catch up with the variation. 
Consequently, the effect of high frequency vibration 
on the fluid flow is like a disturbance which somewhat 
enhances thermo-gravitational convection added to 
the fluid flow. 

(0) 

IT 

Nu=9.22 

3lT/2 

Nu=0.28 

2n 

Nu=a.al 

Since the Rayleigh number (Ru = 10”) is high, 
which causes thermo-gravitational convection to be 
strong, then the isotherms constantly gather densely 
near the lower region of the left wall and the higher 
region of the right wall during the variation of 
vibration frequency from low to high. 

The variations of the Nusselt number and stream 
function with the phase angle E are shown in Figs. 15 
and 16 for case 1 (Ra = 104, G = lOh) and case 11 
(Ra = 10h, G = 10h), respectively. In Fig. 15(a), the 
region (o = 110) is in the vibration convection region. 
and the phase shift between the maximum values of 
Y’,,, and IV”,,,\ is nearly n. The values of Y,,,,, and 
Y,,, appear alternatively. In Fig. 15(b). LI) = 900 is in 
the resonant vibration convection region. The clock- 
wise rotating flow (Y,,,,) is much stronger than the 
counter-clockwise rotating flow (Y,,,). The phase 
shift between the maximum values of Nu and IY,,,,/ 
approximately equals n/2. As the frequency increases 
up to 1110 (Fig. 15(c)), the Nusselt number and 
stream function vary irregularly. The results cannot be 
improved even if the mesh and time step are increased 
massively. The exact periodic solutions are hardly 
found in spite of calculating hundreds of vibration 

periods. The results shown in the figure are com- 
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FIG. 12. Isotherms and streamlines for Ra = 1O6, G = 106, 
w = 800. (a) (r = n/2, (b) OT = IZ, (c) 01= 3742, (d) 01 = 27~ 

paratively periodic ones. The data used in equation 
(13) are about 16 periods. The results of o = 1210 in 
this case are also irregular and similar to Fig. 15(c). 
In Fig. 15(d), w = 1510, which is in the inte~ediate 
region, and the difference between the maximum and 
minimum Nusselt number is smaller than 5%; the 
phase shift between the maximum values of Y’,,, and 
lYminl equals z. In Fig. 15(e), o equals 5310, which is 
in the high frequency vibration convection region. A 
multi-frequency response occurs, and a flow period 
consists of approximately 12 vibration periods. It is 
noted that the variation of the Nusselt number is small 
in every vibration period, but is large in one flow 
period. This phenomenon occurs when the frequency 
is larger than 3310. 

Figure 16 shows the variations of the Nusselt num- 
ber and stream function with the vibration phase angle 
LX for case II (Ru = 106, G = 10”). In Fig. 16(a), in 
the region of quasi-static convection (w = 200), the 
Nusselt number and flow intensity (lY,i,l) vary nearly 
in-phase with the vibration. In Fig. 16(b), w = 800, 
since the variation of the thermal boundary layer lags 
the vibration motion, and the maximum Nusselt 
number does not occur at the maximum value of 
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ii 
(D 
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2n 
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&I 
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FIG. 13. Isotherms and streamlines for Ru = 106, G = 106, 
~=15~.(a)~=~,(b)ff=2~,(c)~=3~,(d}~=4~. 

the stream function. In Fig. 16(c), the frequency o 
(= 900) is in the resonant vibration region. The flow 
varies irregularly even if the mesh and time step are 
increased massively. This phenomenon is similar to 
that of Fig. 15(c). In Fig. 16(d), the frequency u 
(= 1500) is still in the resonant vibration region, the 
period of the flow is twice that of the vibration period 
and the phase shift between the maximum Nusselt 
number and the vibration is nearly 742. In Fig. 16(e), 
w = 9000, which is in the high frequency vibration 
region, the phase shift between the maximum Nusselt 
number and the vibration approaches K, and Y,,, and 
Y’min are out-of-phase with rr. 

THE PRELIMINARY ESTIMATION FOR THE 

RESONANT VIBRATION FREQUENCY 

In the resonant vibration convection region 

(Q = 900 for Ra = 104, G = lo6 and w, * 900 for 
Ra = 106, G = lo’), there is no velocity boundary 
layer, instead of the fluid flowing nearly uniformly 
around the enclosure, the main rotating direction is 
almost invariant. As for the isotherms, near both ver- 
tical walls the isotherms gather densely and are par- 
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FIG. 14. Isotherms and streamlines for Ru = lO”, G = IV’, 
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allel to the walls, in the core region the isothermal 
bands are distorted and the high isothermal band 

apparently extends to the right upper region. 
While the resonant phenomenon occurs, the fre- 

quencies of the flow and the vibration are the same. 
The resonant period of the Row can be considered as 
the time of the fluid flowing one circle around the 
enclosure. However, the direction of the acceleration 
induced by the vibration motion alternates oppositely 
once during a period; in turn, the direction of the 
acceleration is the negative y-axis in half a period and 

the positive y-axis in another half period. 
Consequently, the flowing motion of the fluid in the 

resonant vibration convection region can be described 
as follows. The fluid first flows from the left lower 
region; at this time the fluid is hot and the direction 
of the acceleration is the negative y-axis, then the 
rotating direction of the flow is clockwise. At the end 
of the first half period, the fluid must flow to the 
right upper region (half path of a circle around the 
enclosure) and the direction of the acceleration will 
change to the positive y-axis. In order to keep the 
rotating direction invariant, the fluid must maintain 
a hot temperature condition in the right upper region 

to synchronize with the opposite direction of the accel- 
eration 

Based upon the phenomenon mentioned above and 
the energy equation, the following results can be 
obtained from the scale analysis method. In the core 
region 

T-AT= T,,--T, 

1 - I- = 2niQ 

x. y - I, 

AT V*AT TAT 

f r, L-2. 

v*r 
1 

cd- tart 2n 

L ,y = L’n = -;; (12) 

For the resonant vibration flow. I/* I- -- L, then 

V*I- .“i . 
L 

- I. 

Hence, it is suggested that the energy balance occurs 
mainly between the heat capacity and convection 
terms at the resonant vibration state. Consequently, 
the variation of the thermal diffusion term (27~)~) 
must be smaller than that of the convection or heat 
capacity term, and 2x1~ < I. 

From the viewpoint of dynamics, first consider the 
.r-direction ~nomentum equation inside the Stokes 
layer Ls,, which is caused by the vibration oscillating 

flow [29] 

.Y - 6, = 4,5,/(2v$) 

,Y - L 

t - n/a. (14) 

The magnitudes of the order for the inertia and vis- 
cous terms are r/r and VO/.V:‘, res~ctively 

inertia term 4.5: x 2 

viscous term 
>l 

71 

The inertia term in the Stokes layer is larger than the 
viscous term. The following equation can be dcter- 
mined : 

inertia term - buoyancy term 

(15) 

The resonant phenomenon is caused by the oscil- 



w= 110.0 

4.276 

2 3.274 

2.273 L!k 

13.550 

? 6.030 

0.000 L-L 

Thermal convection in an enclosure 1707 

w=l 110.0 

w= ow.0 

6.24a :: 5.335 RP 

a 

(4 

a Vibration periods 

w=1510.0 

4.205 

2 4.104 

3.999 Ii.!J 

27.730 

B + 13.555 

0.000 

-0. 

d -16.171 
c+ 

ILL -31.362 
0 ff m 

-45.032 

a Vibmtion periods 

(d) (e) 

(b) (cl 

21.774 

FIG. 15. The variations of the Nusselt number, the maximum and minimum values of stream function with 
the vibration phase angle (a) for Ra = 104, G = 106. (a) w = 110, (b) o = 900, (c) CIJ = 1110, (d) w = 1510, 

(e) w = 5310. 

lating flow induced by the vibration, and the static At resonant state, the flow frequency is equal to the 
gravity somewhat affects the resonant frequency. vibration frequency ; thus the following equation is 
Therefore, equation (15) can be expressed as determined : 

dv 
dt - bR’/?AT sin CU (16) s wq 

4L = (VI dt. 
cl 

(18) 

v - bi2/3ATcos at. 
Substituting equation (17) into equation (18) and 

(17) solving the resonant frequency R, 
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the vibration phase angle (a) for Ra = 10”. G = 106. (a) o = 200, (b) w = 800, (c) cu = 900, (d) tu = 1500, 

(e) w = 9000. 

L = b/lAT (19) Table 2. Comparisons of the resonant frequency proposed 
by the authors (J(2G)ePr) with those of Yurkov [20] 

Q, = J(2G) Pr 
(Pr = 1) 

(20) ~~ _~ ~~~__~~~~ 
G 

in which w, = Q,L’/cc. 
Data from ref. [20] J(2G). I+ 

Solving equation (20), the value of the resonant 9x IO4 272 423 
frequency w, for the G = 106, Pr = 0.71 case is about 1.6x 1Or 558 565 

1000, which is in agreement with those values obtained 2.5 x 10’ 722 707 

from the numerical method in this study. In Table 2, 
3.6 x IO’ 890 x4x 

~_ ~~~_ ~~~~. ~~~ ~~~ _ 
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the solutions obtained from equation (20) are com- effects on convective heat transfer in enctosures, J. Heat 

pared with those of Yurkov [20] (from Fig. 14 of Transfer 92,42%438 (1970). 

ref. [7]). The deviations between both solutions are 9. A. A. Ivanova and V. G. Kozlov, Vibrationally gravi- 

allowable except for the G = 9 x lo4 case. 
tational convection in a horizontal cylindrical layer, 
Heat Transfer-Sow Res. 20,23>247 (1988). 

10. A. A. Ivanova, Influence of vibrations of the unsteady- 
state convective heat transfer in a cylindrical cavitv. Heat 
Transfer-Sou. Res. 20,248-251 (1988). I 

11. M. P. Zavarykin, S. V. Zorin and G. F. Putin, Exper- 
CONCLUSlONS 

The study of thermal convection in a two-dimen- imental study of vibrational convection, D&l. Akad. 

sional square enclosure induced simultaneously by Nauk SSSR zS1,815-816 (1985). 

gravity and vibration is investigated by a penalty finite 
12. M. P. Zavarykin, S. V. Zorin and G. F. Putin, Convective 

element method. Several conclusions can be drawn. 
instabilities in a vibrational field, Doki. Akad. Nauk 
SSSR 29X309-312 09881. 

13. G. Z. Gershuni and I% M. ‘Zhukhovitskii, On parametric 
excitation of convective instability, Prikl. Mat. Mekh. 
27.779-783 (1963). 

(1) According to the individual characteristic, the 
thermal convection can be divided into five regions : 
(i) quasi-static convection ; (ii) vibration convection ; 14. G.‘Z. Gershuni, E.‘M. Zhukhovitskii and Yu. S. Yurkov, 

(iii) resonant vibration convection; (iv) intermediate On convective stability in the presence of periodically 

convection ; and (v) high frequency vibration con- 
varying parameter, Prikl. Mat. Mekh. 34,47@-480 (1970). 

15. S. M. Zenkovskaya and I. B. Simonenko, Effect of high 
vection. 

(2) In the high Rayleigh number case (Ra = 106), 
the gravitational thermal convection dominates, and 
the vibration does not enhance the heat transfer rate 
remarkably. In contrast, in the low Rayleigh number 
case (Ra = lo”), except in the quasi-static convection 
region, the vibration thermal convection is dominant, 
and the vibration enhances the heat transfer rate sig- 
nificantly. 

(3) According to Fu and Shieh [24], the quasi-static 
convection region can be determined approximately 
by the following relation : 

(4) The resonant frequency w, derived from the 
preliminary estimation can be expressed as w = 
,/(2G) - Pr. The results predicted by the equation are 

in agreement with those obtained from numerical 
methods. 
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ETUDE DE LA CONVECTION THERMIQUE DANS UNE CAVITE INDUITE 
SIMULTANEMENT PAR GRAVITE ET VIBRATION 

R&sum&--On &die numiiriquement la convection thermique dam une cavit6 bidimensionnelle carrbe, en 
presence de gravith et d’une vibration verticale. Une mithode d’kliments finis avec un algorithme d’it&ition 
Newton-Xaphson et un schkma de diffkrences rktrograde avec le temps sont adopt&s pour resoudre les 
kquations. Pour ttudier les effets de la frkquence de vibration et du nombre dc Rayieigh sur la convection 
thermique, la frtquence varie entre I et 10’ et on consid& trois valeurs diffbrentes du nombre de Rayleigh 
soit 0. 10’ et IO”. D’apr& lcs r&ultats, Ia con\cction rhcrmique petit ittrc divisie en cinq I-&on% i I) 
convection quinsy-st~itique. (2) convection dc bibration. (3) comcction de vibration r&onante. (4) toll- 
section il~terrn~di~~ire et (5) convection de vibration ct haute frequencc. Au nombrc de Rayleigh 21~~; 
( = IO”). la convection thermiyue g~a~it~~ti~)nncllc dominc et 12 l~l(~uvenlent de vibration ll.~l~iglnentc pas 
scnsibiement le flux de chaleur transfkr‘ri. Par contre. au faihic nombre de Rayleigh. (= IO’). exceptk danq 
la rbgion de convection quasi-statique, la convection thermique de vibration est dominante et la vibration 
augmente significativement le transfert de chaleur. De plus, on propose deux methodes analytiques pour 
pridire les frkquences de la convection quasi-statiquc et les rtgions de convection de vibration rksonante. 
Les valeurs prkdites par les deux mkthodes sent cn accord avec celles obtenues par la m&hode numtrique. 

IJNTERSUCHUNG DER DURCH SC’HWERKRPIFT UND VIBRATION 1NDIIZIERTF.N 
THERMISCHEN KONVEKTION IN EINEM HOHLRAUM 

~usamme~fassung-Die durch die gleichzcitigc Einwirkun~ van Schwerkraft und vertikaler Vibration in 
einem ~weidimellsionalen quadratischen ~I(~hlr~luln iuduncrte thermische Konvektion wird numcrisch 
tmtersucht. Eine Finite-Elemente-Metll~)~ic mit einem Ncwtojt~ Raphson-Iterations-Al~orithmus und ein 
R~ckw~rtsdifferen~etl-Verfahren fiir den Zeittcrm werden bei dcr L~isung der bestimmcn~~en Gjeicllungen 
verwendet. Urn den EinRuD von Vibrationsfrequcnz und Raylcigft-Zahl aufdie Konvektion zu untcrsuchen. 
wird die Frequenz von I bis IO’ bei Rayleigh-Zahlen von 0. IO” und IO” variiert. Es zcigt sich, daB die 
thermische Konvektion in fiinf Berciche aufgeteilt werden kann : ii) quasi-statische, (ii) Vibrations-. (iii) 
Resonanz-Vibrations-, (iv) intermediirc und (v) Hochfrcqucnl-Vibrations-Konvektion. Bei groBer Ray- 
leigh-Zahl (IO”) dominiert die Gravitations-Konvektion. und die Vibrationen erhiihen den Wirmcihergang 
nicht merkiich. Im Bereich IO’dagegen (ausgenommen im quasi-statischen Konvcktions-Bereich) dominiert 
die Vibrations-Konvektion. und der WIrmeiihcrgang wird deutlich verbessert. Weiterhin wcrden zwei 
analytische Methoden vorgeschlagen. mit denen die Freyuenrcn dcr quasi-statischcn Konvcktion, bzw 
der Gebicte mit Resonanz-Vibrations-Konvektion berechnct wcrden kiinnen. Die hierbei crmittcltcn Werte 

stimmen mit den nach dcr numerischcn Mcthode bestimmten iibercin. 

~CC~E~OBAH~E TE~~OBO~ ~OHBE~~~~ B nOJIOCTI4 3A CYET CHJIbI T8XECTW 
I4 BWEPAL@iEl 

h”lOTW”n--YACJIeHHO HCCItel,yeTCR TennOBal KOHB‘ZKIJRIl 8 J,ByMepHOii KBWpaTHOfi ntOitOCTA 38 CY‘?T 

COBMeCTHOrO fieiiCTBHR CBnbl TRW(WTI1 H BepTAKUIbH0i-i sa6panmi. &IAnrr f,tXUeHHX O~~~‘2JWO~~X YpaB- 

HeHHti AC"OJIb3ytOTCK MeTOH KOHe'fHbIX 3neMeHTOB C HTepalWOHHbIM i4.WOpt%TMOM HbroToHa-h$CoHa 

H o6paTnas pa3nocTHas cxeMa, ywrbmamular BpeMeHHbIe WeHbI. gJE4 yCTaHOBneHH5l BJIHRHHR 

'raCTOTblse6pa~ulllarHcnaP3neKHaTennOBy~KOHBeKrltrIo B‘IOJIOCTH4aCTOTa etl6pawiii BapbHpyeTCn 

OT 1 no 10“ II paccMa-rpeBamTcn spa pasnnwwx 3HaqeHsiK racna Psnes, paeebxe 0, lo4 B 106. B COOT- 
BeTCTBHIl C nOnyse"Hb,MA pe3yJIbTaTEiMH Tell."OB,'IO KOHBeKLIUH) MOmHO pa3LleJIFiTb Ha II5ITb 06naCTefi: 

(I) KBa3HCTaTIi’leCKas KOHBeKLW,(II) BI16POROHBeKUEls,(III)pe30HaHCHaK BES6pOKOHBeKLWFt,(1V)IlpOMe- 

XYTOSHW, KOHBeKWS Ii (v) BbICOKOYaCTOTHaR BK6POKOHBeKWR. B CJIy%E BbICOKOfO ‘iEiCJta P3JleR (I@) 

npeo6n~aeTrpaBI1Ta~~OHHaRTennoBaP ROHBeKIlEiK u 8~6pa~~oHHoe~Bn~eH~e He np%BOJlUT K3HaW- 

Te_nbHOti ~HTeHC~~HK~~Te~o~e~H0ca.B cnyrae Xe ~83~0ro sicna P3neiI (lo‘+) BCIoxy 38 mzznoqe- 
HI?OM o6nacTa KBa3~~aT~~~KO~ KOHBi?KUHH ~OM~H~pyeT B~6pauKo~~as T6Z’lJZOB~Sl KOH~K~~K If 

B~6~~~OHHOe ~B~eH~e Cy~~~HHO y~~~~Ba~ CKOpOCTb ~~nO~e~H~a. KpoMe TOTO, HpeLUTO- 

KeHblfiBa aH~~T~q~K~K MeTOGa paweTa SaCTOT LIJ~SI o6nacTe~KBa3~TaTHq~KO~ KOHBeKUHE il pe30- 

HaHCHo% B&ipOKOHBeKlW. $W,eHNX, I,OJ,~‘ZHHble ZIpH paC%TaX C mmnb3O~H~eM 3TAX MeTODOB. 

COrJIaCyIOTCn C 98CJIeHHblMA pe3yJlbTaTaMEi. 


